F-28 Viper

Revision as of 00:19, 3 September 2019 by Layarteb (talk | contribs) (→‎Upgrades)
Jump to navigation Jump to search
Layartebian Defense Corporation F-28 Viper
F-28 Viper.png
(Artwork by Mist)
Role Multirole fighter
National origin  Layarteb
Manufacturer Layartebian Defense Corporation
First flight 17 June 1994; 30 years ago (1994-06-17)
Introduction 1 April 2002; 22 years ago (2002-04-01)
Status In-Service
Primary users Imperial Layartebian Air Force
Imperial Layartebian Navy
Produced 2004 - Present

The Layartebian Defense Corporation F-28 Viper is a twin-engine supersonic multirole fighter aircraft originally designed for the Imperial Layartebian Military. More Vipers have been produced than any other supersonic, Layartebian, jet fighter. The Viper is an all-weather, 4.5 generation aircraft similar to the Dassault Rafale and the Eurofighter Typhoon.

The Viper's key features include a frameless, bubble canopy for superior visibility, a side-mounted control stick and throttle, dual engines, and a large, delta wing. The aircraft makes heavy use of fly-by-wire systems, making it a highly agile aircraft, especially when combined with thrust vectoring engines. The fighter has an internal cannon and 14 hardpoints for air-to-air and air-to-ground ordnance.

The Viper is the most numerous fighter in Layartebian service and it is the most exported Layartebian fighter aircraft of all time. The Viper forms the backbone of several foreign air forces and navies.

Development

Origins

The origin of the F-28 Viper stems from the 1980s when the F-16 Fighting Falcon was introduced to service. Originally planned to be a lightweight fighter for air superiority, the aircraft ballooned into a multirole workhorse for the Imperial Layartebian Air Force. However, the design had some flaws and teething problems with the first variants did not sit well with brass. Wire chafing caused several prominent crashes, killing multiple pilots in the 1980s and though these problems were largely rectified by the 1990s, especially with the F-16C/D variants, the initial troubles left a sore memory of the aircraft. As if these initial problems weren't enough, limitations on range and payload for the Falcon ultimately doomed the nimble, agile fighter in the eyes of the brass.

In the early 1990s, the Ministry of Defense began a new fighter program dubbed the Joint Multirole Fighter Program or JMF Program. At the time, the British Aerospace EAP, the Mirage 4000, and the Dassault Rafale had all taken to the skies with technological demonstrators. The EAP would eventually become the Typhoon, while the Mirage 4000 was canceled in favor of the Rafale. It was from these aircraft, along with others, that the JMF Program would take its influence.

Early on in the JMF Program, designers conceded that a delta wing would be necessary for the type of ordnance, range, and agility requirements placed on the JMF. In addition, the debut of stealth aircraft such as the F-117 Nighthawk and the B-2 Spirit guaranteed that some attention would need to be paid to stealth, albeit the JMF Program was never required to procure a stealth fighter, that was left for other programs. The aircraft had to have a top speed in excess of Mach 2 at altitude and in excess of Mach 1.1 at sea level and it had to have two engines, which was a major distinction from the Falcon, which was a single-engine aircraft. Some in the Ministry of Defense believed that the single-engine of the Falcon contributed to its high accident rate and, for the aircraft to be accepted by the navy, it had to have two engines.

What resulted was the YF-28, which first flew on June 17, 1994. The aircraft bore a rather unique design while having the same, general appearance as its contemporary, soon-to-be 4.5 generation fighters. On its first test flight, the fighter was taken up to transonic speed and flown through several maneuvers not typically done for a first test flight. Handling was superb and performance issues were nonexistent. On the third test flight, the aircraft exceeded supersonic flight and on its seventeenth test flight, it reached a top speed of Mach 2.05 at an altitude of 36,500 feet (11,125 meters).

Fifteen prototype YF-28s were constructed from 1994 to 1996 and put through rigorous testing. Ten were single-seat variants and five were two-seat variants. The two-seat variants were used primarily for naval testing. The JMF was in direct competition with the F-18 Super Hornet to replace the F-18 Hornet and the A-7 Corsair II on aircraft carriers. The Corsair II had already been replaced with the air force by the Falcon but several A-7E Corsair IIs still flew with the navy into the early 2000s.

The YF-28 was officially dubbed the "Viper" on July 10, 2000 when low-rate initial production was authorized. The first operational squadron of F-28A Vipers would reach initial operational capability on April 1, 2002 with the air force and on January 11, 2004 with the navy.

Production

Low-rate initial production began in July 2000 and in FY00, eight aircraft were produced with a further sixteen in FY01. By FY05, there were over one hundred and twenty-five aircraft produced per year, with this number exceeding two hundred and fifty in FY10. From 2000 to 2003, Vipers were only produced on one line by this was expanded to two lines in 2004, three lines in 2005, and five lines in 2008. As of 2019, Viper production continues on all five lines with an astonishing rate of some four hundred and fifty aircraft per year.

Manufacture of the Viper is purely domestic, despite requests from large, export partners to secure their own production lines. The aircraft is produced at facilities in New York, Pennsylvania, Alabama, Venezuela, and Guyana. There were plans to open a facility in Quebec but these were shelved by the Layartebian Defense Corporation to produce other aircraft.

Upgrades

Initial versions of the F-28 Viper were of the Block 1 variant. The Block 1 variant offered very limited air-to-air and air-to-ground capabilities. These aircraft were largely to be used as trainers for pilots transitioning into the first squadrons. Only forty-eight such aircraft were produced on the Block 1 standard. These aircraft could only carry AIM-9M Sidewinder air-to-air missiles and unguided, iron bombs of the Mark 80 series.

Production quickly switched to the Block 5 variant, which integrated full air-to-air capabilities, allowing the employment of the AIM-7 Sparrow, the AIM-120 AMRAAM, and the newer variants of the AIM-9 Sidewinder. A total of one hundred and forty-four aircraft were produced before production switched to the Block 10 variant.

The Block 10 variant offered integration of precision-guided munitions for air-to-ground missions. This included the use of GPS-guided JDAM bombs and laser-guided Paveway bombs as well as guided missiles such as the AGM-65 Maverick and the AGM-88 HARM. Unguided rockets as well as other air-to-ground missiles were integrated into the aircraft's software. Over five hundred Block 10 aircraft were produced.

The Block 15 variant, however, was to be the penultimate variant produced. Eventually, all Block 5 and Block 10 aircraft were upgraded to the Block 15 variant. The Block 15 variant included full ordnance capabilities as well as newer weapon systems that were not available when the initial Block 1, 5, and 10 variants were produced. It also increased the capacity for chaff and flare dispensers as well as provided the ability to carry standoff jamming pods.

The current variant is the Block 20, which has upgraded the aircraft's radar and countermeasures systems with new software updates and provided the ability to conduct electronic jamming missions in two-seat variants. There are currently no plans to update Block 15 aircraft to the Block 20 standard due to the high cost.

A future Block 25 variant is planned, which would focus primarily on the propulsion systems of the aircraft. Designers are evaluating engine upgrades that would allow for slightly less fuel consumption at cruising power, increasing the aircraft's range by as much as 10%. There may be other changes as well to the aircraft's fly-by-wire systems and its avionics; however, this variant is not planned to begin production or conversion until 2022.

Design

Overview

General Configuration

Cockpit

Avionics

Propulsion

Weapons

Operational History

Domestic Service

Foreign Service

Variants

Prototype Models

Production Models

Operators

Domestic Units

Foreign Units

Operational Losses & Accidents

Specifications

General characteristics Performance

Links

Notes

See Also

References