Emoji u1f384.svg
Merry Christmas from the IIWiki Team! Have a happy new year!

H.GR-21 Thureos: Difference between revisions

Jump to navigation Jump to search
mNo edit summary
mNo edit summary
Line 97: Line 97:


==Design==
==Design==
The Thureos large size and high throw weight of 12 metric tons classify it as a superheavy ICBM; it is variously designed to deliver large-yield thermonuclear strikes on large population centers and military targets, as well as saturation attacks; the Thureos is capable of carrying four large hypersonic guide vehicles, permitting a host of different payloads to be delivered. Willink utilized nuclear weapons for the first time in combat in 2005, destroying military and civilian targets in Saharistan with Menavlon ICBM's in response to a Saharistani [[nuclear strike of the city of Nesha]] which killed over one million people. Given the vastly larger scale of nations, urban centers, and military-industrial facilities in [[Haven (region)|Haven]], Gholgoth, and [[Greater Dienstad]], a more weighty, sophisticated, and multifaceted delivery platform was necessary. Willink further gained valuable experience operating Khan Class Heavy Ship to Ship missiles and various Izistani rocketry launch platforms, taking valuble lessons from some the region's cutting-edge rocket science. The Thureos incorporates advanced materials, propulsion, and countermeasures to maximize its utility against large, technologically sophisticated adversaries.  
The Thureos large size and high throw weight of 12 metric tons classify it as a superheavy ICBM; it is variously designed to deliver large-yield thermonuclear strikes on large population centers and military targets, as well as saturation attacks; the Thureos is capable of carrying four large hypersonic guide vehicles, permitting a host of different payloads to be delivered. Willink utilized nuclear weapons for the first time in combat in 2005, destroying military and civilian targets in Saharistan with Menavlon ICBM's in response to a Saharistani [[nuclear strike of the city of Nesha]] which killed over one million people. Given the vastly larger scale of nations, urban centers, and military-industrial facilities in [[Haven (region)|Haven]], Gholgoth, and [[Greater Dienstad]], a more weighty, sophisticated, and multifaceted delivery platform was necessary. Willink further gained valuable experience operating Khan Class Heavy Ship to Ship missiles and various Izistani rocketry launch platforms, taking valuble lessons from some the region's cutting-edge of rocket science. The Thureos incorporates advanced materials, propulsion, and countermeasures to maximize its utility against large, technologically sophisticated adversaries.  


==Warheads and Loads==
==Warheads and Loads==

Revision as of 22:29, 16 December 2024

H.GR-21 Thureos
TypeIntercontinental Ballistic Missile (ICBM)
Place of originWillink
Service history
In service2021-present
Used byWillink
Production history
Designed2009-2021
ManufacturerInstitoúto Stratigikón Naftikón Erevnón
Unit cost$50-70 million USD
Produced2021-
VariantsH.UR-3 Oceanus
Specifications
Weight209.5 to 231.5 tons
Length119ft
Diameter11ft
Warheadhigh yield thermonuclear, MIRV, MARV, EMP, high yield thermobaric, anti-fleet, tactical nuclear, biological/chemical, decoy
Detonation
mechanism
Ground burst, air burst, kinetic
Blast yieldup to 150mt depending on configuration

PropellantThree-stage solid-fuel
Operational
range
15,000-18,000 km
SpeedMach 20+
Guidance
system
INS, GNSS, TERCOM, Autonomous, Celestial
Accuracy5-10 m CEP
Launch
platform
Silo, TEL, Submarine (SLBM)

The H.GR-21 Thureos is an superheavy intercontinental ballistic missile and FOBS platform developed by the Willinkian conglomerate and defense contractor Institoúto Stratigikón Naftikón Erevnó (ISNE). Designed following Willinkian experience utilizing rocket systems from Zeppelin Manufacturers and Izistan, the Thureos is designed as a highly adaptable system for strategic and tactical needs, operable from several launch mediums, and mounting a variety of payloads.

History

Design

The Thureos large size and high throw weight of 12 metric tons classify it as a superheavy ICBM; it is variously designed to deliver large-yield thermonuclear strikes on large population centers and military targets, as well as saturation attacks; the Thureos is capable of carrying four large hypersonic guide vehicles, permitting a host of different payloads to be delivered. Willink utilized nuclear weapons for the first time in combat in 2005, destroying military and civilian targets in Saharistan with Menavlon ICBM's in response to a Saharistani nuclear strike of the city of Nesha which killed over one million people. Given the vastly larger scale of nations, urban centers, and military-industrial facilities in Haven, Gholgoth, and Greater Dienstad, a more weighty, sophisticated, and multifaceted delivery platform was necessary. Willink further gained valuable experience operating Khan Class Heavy Ship to Ship missiles and various Izistani rocketry launch platforms, taking valuble lessons from some the region's cutting-edge of rocket science. The Thureos incorporates advanced materials, propulsion, and countermeasures to maximize its utility against large, technologically sophisticated adversaries.

Warheads and Loads

Propulsion

The Thureos utilizes a three-stage, mixed fuel propulsion system. The first stage consists of a lightweight composite casing using carbon-carbon reinforced with ablative liners, producing 3,500 kN of thrust, fueled by a PBHT-based solid propellant combined with metalized additives. The second stage consists of a composite-aluminum structure with active thermal cooling, mounting an array of decoys, chaff, and electronic jammers. This stage produces 1,500 kN of thrust, fueled with a solid propellant mixture optimized for mid-course acceleration. The third stage consists of a maneuverable post-boost vehicle housing up to 20 MIRVs or (up to) 4 hypersonic glide vehicles, producing 250 kN of thrust, and fueled by liquid bi-propellant for fine maneuvering and MIRV deployment. The glide vehicles of the Thureos employ ablative materials, carbon-carbon composites, and ultra-high-temperature ceramics to survive temperatures above 2,000°C during reentry. The HGV's of the Thureos are capable of recorded speeds of Mach 20+ (~25,000 km/h) during reentry and Mach 10–15 (~12,000–18,000 km/h) while in glide velocity.

Operational History

Delivery platforms