C220 Rocinante II

Jump to navigation Jump to search
C220 Rocinante II
Rocinante AFV.jpg
A C220-C on display at ALTAREX 2020
TypeArmoured fighting vehicle
Place of origin Iverica
Service history
In service2020-present
Used byGalicia Flag.png Greater Galicia
Iverica Iverica
Narva Narva
Vasqqa Vasqqa
Flag of the Duchy of Verde.png Verde
Production history
DesignerCavallero Heavy Auto
Designed1960-2018
ManufacturerCavallero Heavy Auto
Produced2019-present
VariantsC220-A
C220-B
C220-C
C220-AA
C220-H
C220-M
Specifications
Weight22 tonnes (Level I: baseline armour)
26 tonnes (Level II: composite applique)
28 tonnes (Level III: composite & ERA)
Length5 m (16 ft)
Width2.8 m (9.2 ft)
3.6 m (12 ft) (Level-III applique)
Height3 m (9.8 ft) (max)
2.6 m (8.5 ft) (min)
Crew2-3 (commander/gunner & driver or commander, gunner, driver)
Passengers10

ArmorLevel-I: HHS strike face with Aluminium 8009 inner plate
Level-II: applique ceramic composite armour
Additional applique explosive reactive armour
Main
armament
C220-A: 1 × Arx AC-30-II 30×250 mm chain gun (remote turret), 1 × 8.6×70 mm co-axial machine gun
C220-B: 1 × 40×53 mm grenade machine gun, 1 × 6.8×43 mm co-axial machine gun
C220-C: 1 × 12.7×99 mm machine gun (remote weapon system)
C220-AA: 1 × Arx AC-35-III 35×228 mm chain gun, 2 × FIM-92
C220-M: 4 × MMP/MST-200, 1 × 8.6×70 mm pintle-mounted machine gun
EngineCavallero CAV-AFV220 twin-turbocharged 12.3-litre diesel V6 engine
500 hp (370 kW)/2600 rpm
550 hp (410 kW)/2800 rpm
Power/weightBaseline: 22-25 hp/tonne
TransmissionDenk Hiswel G256 15-30 (automatic, 6-speed forward & reverse)
Suspensiontorsion bar, 2 × set of 5 road wheels
Operational
range
A1 (Level-II): 385 km (239 mi)
SpeedRoad: 70 km/h (43 mph)
Wading: 5.8 km/h (3.6 mph)
Steering
system
Drive by wire

The C220 Rocinante II is a Armoured fighting vehicle produced by Cavallero Heavy Auto. It is the product of a modernisation programme aimed at improving the older Matapon TOMP-IV Diokles, a Tagmatine Armoured Personnel Carrier. The vehicle entered pre-production in 2019 and entered service with the Iverican Army and the Republican Marine Regiments in 2020.

The C220 is a direct development based on the TOMP-IV, sharing its general chassis layout and silhouette. The vehicle was also designed to retain key design features from the Diokles, namely its relative low mass and compact profile. It also incorporates advancements, featuring improvements centred on protection, sensor technology, drive train, and armament mounting. In Iverican service, the C220 is used to supplement parachute infantry, mountain infantry, breacher-engineer, and amphibious expeditionary units.

History

Cavallero announced the programme at the 1998 Altaria Arms Expo (ALTAREX) as the Rocinante Project, and subsequently revealed the C200 Rocinante at the 2000 ALTAREX. Though originally announced as a technology demonstrator and compentency showcase, repeated interest in the project prompted Cavallero to design a more advanced unit with the intention of mass-production. The new design was entered in in a 2008 preliminary bid to the Iverican Ministry of Defence as the C220 Rocinante II. The C220 design passed Ministry reviews in 2010 with Cavallero receiving second-stage funding for continued development by 2011. The vehicle entered pre-production in 2019 and entered service with the Iverican Army and the Republican Marine Regiments in 2020.

In later public commentary, Cavallero revealed that the Rocinante Project had not been intended for full production and had only received funds from the company's marketing budget and not its R&D budget. Cavallero revealed that initial funding for the C200 technology remonstrator had been $1.9 million ADS issued as a marketing initiative and had been constructed outside of the design team's billed hours, initially as a recreational project with a TOMP-IV chassis purchased from Ee-bay.

Design

Cavallero intended for the C220 to offer modern technical solutions and design innovations to the proven but dated design of the TOMP-IV. New material technology for the C220's composite armour package and composite rubber track system are notable enhancements. Since the TOMP-IV's entry into service in 1960, significant improvements in the reliability and efficiency of modules like the power plant and transmission allowed Cavellero to introduce a higher power twin-turbocharged V6 plant and a computerised, electronic torque converter automatic transmission to replace the TOMP-IV's naturally-aspirated 6-cylinder and mechanical torque converter respectively. Advancement in armament technology also allowed for the mounting of lightweight remote systems where larger directly-manned systems would have been necessary.

Mobility

Retaining a similar roadwheel layout and size, a similar suspension system, and an identical drive train layout, the C220's drive system is a direct enhancement based on TOMP-IV's drive system. Modularly, it's main differences include the track system, the power plant, and the transmission module. Minor changes include a more robust final drive gearset made from milled stainless steel alloy and roadwheels with a new mould featuring lightening cuts.

Running Gear

The primary difference in running gear is the replacement of steel tracks with a composite rubber track system. The new CRT pair is has a pitch of 190mm, a width of 390mm, and a height of 150mm (including the guide lugs and grousers), these tracks are wider than the T130E1 tracks used on the TOMP-IV. The CRT used on the C220 was designed and manufactured by DuraMat, which provides a similar design to Arx Arms Manufacturing for the UC-42 Léon and the UC-30 Pantera.

The C220's CRTs are comprised of a layered mesh of soft metals, rubber, plastics and fabrics. The construction of the tracks is laminated, with meshes layered together and reinforced by a range of composite materials including carbon fibre and carbon nanotubes, as well as longitudinal and lateral steel cords, or ‘belting’. Above and below the belting are multiple layers of steel mesh configured to resist track twisting and maximise the longitudinal torsional stiffness of the track matrix. The C220's tracks are designed for vehicles weighing up to 30 tonnes. It uses more than 12 separate rubber compounds with an overall composition of approximately 49% rubber, 29% steel and 22% composites. A range of rubber compounds are used throughout the track matrix, with stiffer compounds in the lug cores and softer, more pliable, and UV-resistant compounds on the surface. Those elements, interfacing with moving parts such as the surface of the drive lugs that engage with the drive sprocket, use compounds that have high resistance to abrasion, a low friction coefficient, and are self-lubricating. The typical life of CRT on the C220 vehicles of up to 28,000 kg is approximately 7,000 km up to a max of 9,000 km.

An auto-tensioning system reduces the probability of the CRTs becoming dislodged from the rest of the running gear. A pair of hydraulic-electric pistons can move the idlers to increase or decrease tension. The system uses a pressure sensor to ensure that track tension is always exact and remains constant throughout the track wear cycle. It also makes replacing an entire track system easier as the driver is able to remove tension entirely.

The relative softness of the CRT system reduces the C220's wear on road systems and civilian infrastructure, while also reducing the vehicle's overall mass and increasing fuel efficiency.

Power Pack

a Denk Hiswel G256 scaled-down for 15-30 tonne vehicles

The CAV-AFV220 is a twin-turbocharged 12.3-litre V6 diesel engine providing a maximum governed output of 550 horsepower at 2,800 rpm. Naturally aspirated, the CAV-AFV220 provides a similar maximum power-to-weight ratio as the TOMP-IV. Factoring the twin-turbocharger, both acceleration and top speed have increased to 25 hp/tonne governed. The power plant is mounted on the front-right of the hull and is connected to the Hiswel G256 transmission in an L-configuration which takes up most of the front lower glacis.

The Hiswell G256 transmission drives 2 drive sprockets mounted at the fore of the running gear. Like the TOMP-IV's TX-100 transmission, the G256 is also an automatic transmission using a torque converter system. However, the G256 is a 6-speed transmission with 6 forward speeds and 6 reverse speeds and has a digital governor to control stage transitions and power translation. It uses a computer to interpret driver inputs to incrementally adjust speeds on either track for smoother turning and enables neutral steering The transmission is connected to the C220's drive-by-wire system. It has a dry weight of 1,500 kg and is rated to take a maximum enginer power of 700 hp. The G256 can accept a maximum input rate of 4,000 rpm and is rated for vehicles between 15 and 30 tonnes.

Accessed to the transmission is available panels at the bottom of the lower glacis plate. The power plant can be lifted our from the top deck of the vehicle, which has slotting mounts for a lifting arm. To reduce vulnerability, the C220 armour layout does not feature a removable front plate for power pack access. Instead, the power plant and transmission may be decoupled first and then slid out from a hatch in the passenger compartment, guide rails stored below the seats can be connected to slide the entire power plant into the passenger compartment and out the assault ramp.

Auxiliary power units can be mounted in the form of lithium-ion battery modules, which can be slotted in the vehicle flanks, behind the troop seating. The battery units can be connected to the transmission and power plant for charging when not in use. With all battery slots filled, the C220's may have up to 10 kWh in auxiliary power for silent overwatch.

Electronics

A forward facing array of 3 cameras are used to provide a 120 degree wide arc of viewing for the driver. The cameras are infrared sensitive and can be supplemented by IR headlights. The array can also use ambient IR light to intensify contrast for low-observability during night driving. A set of rear cameras provides guidance for driving in reverse. Using its 360 degree view, the system can project an generated top-down view of the C220 to the driver via LCD display. If the driving camera array is not mounted, the driver can rely on a set of 3 pop-out episcopes within the vehicle or can raise his seat to drive the vehicle from an unbuttoned position.

Armament

The C220 can carry a wide array of weaponry. A remote turret can be mounted to admit main guns. Smaller remote weapon stations can also be mounted. Specialised variants include an ATGM launcher with a retracting missile rack or a mortar carrier with retractable mortar.

Main Gun

The C220-A with its 30 mm remote turret

The C220-A variant is equipped with an Arx AC-30-II 30×250 mm chain gun inside a remote turret. A 8.6×70 mm machine gun is mounted co-axially. The AC-30-II is a single-barrelled recoilless revolver cannon firing caseless telescoping ammunition. As the revolving 3-chambered mechanism is electric, the weapon is considered a chain gun. The AC-30-II may be fed by a single belt of ammunition or double-fed on either hand side by 2 belts. It is capable of swapping between one belt to the next via the fire control computer.

On the C220, ammunition is primarily High-explosive incindiary with a secondary belt of Tungsten Armour-Piercing Fin-Stabilised Discarding Sabot.

Secondary Weapons

A variety of weapons can be mounted on pintles or on remote weapon stations. The C220 may be equipped with a remote turret featuring both 40×53 mm grenade machine gun alongside a 6.8×43 mm co-axial machine gun in a compact weapon turret. Single-weapon remote systems can also be mounted to equip 14.5 mm, 12.7 mm, 8.6 mm, and 7.62 mm machine guns.

On turreted variants, a folding rack of 2x MMP/MST-200 ATGMs can be mounted for dedicated anti-tank needs.

Fire Control

The main gunsight is a 3rd-generation FLIR camera with an integrated laser rangefinder. The telescopic lense is capable of 25x optical zoom or 40x optical zoom depending on the variant used. It is connected to a Fortis Fusiliero-III fire control computer which generates the user interface and digital overlay to crew terminals. The commander can operate this system from his seat inside the main passenger compartment via a remote terminal. The Fusiliero-III is C4I integrated and can send and receive information from the Nousphera network. The commander may also have access to an integrated DorTak Battle Management Terminal.

If needed, the commander can observe the vehicle's surroundings in person by using a top deck hatch. For observation inside, a small retractable gimbal camera can rotate 360 degrees and pitch from -60 to 90 degrees. The gimbal camera mount can extend 1.2 metres above the turret height and is FLIR-capable.

Protection

Protected by a base package of lightweight composite, the C220 can be fitted with a number of applique armour packages equippable in the field. Mountings for soft-kill grenade countermeasures and hard-kill Active Protection Systems are also available. The overall crew and passenger safety is also enhanced by newer fire suppression systems, a spall liner layer and choice materials that reduce the fire hazard present in the TOMP-IV's 5083 aluminum alloy construction.

Secondary protection measures include countermeasure grenades which can fire smoke & chaff munitions, tear gas, or infrared dazzling munitions.

Armour Packages

Level-I consists of 30-46 inches of composite armour. A lightweight armour system is used, comprised of a High-hardness Steel strikeface that contributes to approximately 33% of the plating's thickness, a thin elastomer intermediate layer, and aluminium 8009. The aluminium alloy used is rated to withstand high-temperatures and is less flammable than other aluminium alloy grades. A final fibre-resin spall liner is applied to the interior of the armour plating.

Level-II armour is mounted on the fore and flanks of the vehicle. These applique panels are a lightweight assembly of soft steel and angled ballistic ceramic plates affixed on a steel frame and backed by aluminium foam.

Level-III armour consists of explosive-reactive armour segments containing flyer plates. This can be mounted over the Level-I or II armour and primarily serve to detonate the initial charge of tandem shaped-charge weapons or to destabilise a kinetic penetrator. This array of small ERA cells is rarely mounted on C220's expected to operate in close proximity to dismounted infantry.

Active Protection Systems

The Dahlbein Defence Sauron DIRCM

A gimbal-mounted Sauron Directional Infrared Counter Measure (DIRCM) dazzler unit from Dahlbein Defence can be mounted on the C220. The DIRCM acts as an electro-optical disruptor against range-finders, designators, and ATGMs reliant on laser guidance or infrared homing. Using the C220's integrated Laser Warning Receivers for guidance, the DIRCM module can be used to reduce the accuracy of incoming laser-guided or infrared-homing munitions. The gimbal mount articulates 360° and the dazzler head can pitch at 180°. If present, the whole DIRCM unit is encased in a ballistic glass dome atop the turret on turreted variants and behind the commander's hatch on non-turreted variants.

The C220 is currently being tested for compatibility with the Arx-Fortis Sense-6 Block-II multifunction infrared system which has a soft-kill APS feature.

Dahlbein Defence's Interfector APS can also be mounted on the C220. Interfector is a hard-kill system that utilises explosively formed penetrators (EFP) guided by an F/G-Band fire-control radar. The RI/VPG-040 guiding the system's 2 launchers is a four-faced distributed active electronically scanned array Pulse-Doppler radar designed to detect and automatically track Anti-Tank Rockets, Anti-Tank Guided Missiles and Tank Rounds. A cone of EFPs are fired at an incoming threat, intended to detonate the warhead at safe proximity. The EFP launcher is reloadable and can orient to intercept threats approaching at a high angle of attack. If mounted, the Interfector is typically deactivated when there are dismounted troops in the vicinity.

Safety

For fire suppression, the C220 is equipped with an FM-2000 system using HFC-227ea fire suppression compounds. The system is safe for personnel inside for vehicle, though prolonged exposure is not advised due the displacement of oxygen. Spring-loaded hatches are automatically unlocked if a fighting compartment fire is detected. Crew hatches are designed to be opening with very little impulse. Iverican safety drills emphasise that bumping the interior face of the hatch with the head will be enough to swing hatches open, assisting a quick exit. Redundant hand-held chemical fire extinguishers are mounted inside the fighting compartment and on the vehicle's exterior.

Against CBRN threats, a sensor mounted on the top surface of the turret incorporates a dosimeter, geiger counter, and biochemical detector. A secondary sensor is located inside the fighting compartment. Upon detecting a hazard, the sensor will alert the crew with an audio and light cue. The CBRN protection system activates automatically 0.3 seconds from the time a hazard is first registered. Normally, the interior of the C220 is a positive-pressure space using a CBRN filtered ventilation system. However, the entire vehicle can be hermetically sealed, with hatches and access ports to the hull lined with neoprene and treated EPDM rubber. For radiation shielding, the spall liner includes a polypropylene layer beneath the kevlar layer and the internal-facing armour plates have a thin coating of boron carbide. The vehicle's main ventilation intake is located on the rear deck, above the engine compartment and adjacent to the engine air intake. The air passing through this intake can be cooled by the engine compartment's liquid cooling system. Likewise, convection coils in the ducts can provide heated air. A secondary intake is located atop the turret on turreted variants and on the top deck for non-turreted variants. Ventilation uses a cyclonic system equipped with HEPA filters and a classified biochemical scrubber and filter. The filtration system is accessible from inside the fighting compartment and can be maintained or changed from inside the vehicle. In the event that harmful gases spread inside the fighting compartment, the ventilation system can also be used as an evacuator, working in reverse to flush gases from the interior. Intakes and exhausts can be sealed if the system is compromised. Individual gas masks and extra filters are normally stowed inside the vehicle.

Most of the vehicle's ammunition is stored externally with the exception of the C220-M "missile" variant. If a main gun is present, ammunition is stored in the unmanned turret. Extra ammunition boxes for pintle-mounts or remote machine guns may be stored around the interior. Fuel is stored on the vehicle's flanks but separated from the crew. The voids presented by the fuel tanks provide marginal protection against the munroe-effect from shaped-charge weapons.

Variants

As of 2023, the C220-A "autocannon" variant remains the most widely produced variant of the Rocinante II. TBA