Siedem method
This article is incomplete because it is pending further input from participants, or it is a work-in-progress by one author. Please comment on this article's talk page to share your input, comments and questions. Note: To contribute to this article, you may need to seek help from the author(s) of this page. |
The Siedem Method is a method for allocating seats in parliaments among member states, or in party-list proportional representation systems. Devised by a Zhoushi mathematician Чaraƌa Siedem, it is currently used to allocate seats in the Assembly of the Sekidean Parliament.
Motives
TBA
Usage of the method
TBA
District allocation
Seats are assigned based on the formula:
xS = ⌊PC × (S0 - SR × M) ÷ P0⌋ + SR
where:
xS is the number of assigned seats to the district
PC is the voter pool of the district in question
S0 is the number of total seats available (in ISUA currently set to 500)
SR is the number of reserved seats (in ISUA currently set to 15)
M is the number of districts (in ISUA currently 9) and P0 is the total voter pool of the parliament.
Assigned section
Each districts is reserved a said value of seats, marked as SR, which the district is guaranteed to gain, even if nobody lived in the said district. In the Sekidean Assembly, the number is currently set to 15, meaning that each district gets a baseline of 15 mandates, while the rest is distributed proportionally. Given, that there are currently 9 districts (member states) sending representatives to the Sekidean Assembly, a total of SR × M is set aside from the distribution (in the ISUA currently 135)
Proprotional section
After all the reserved seats are removed from the total S0, the rest is distributed to the districts using the formula xP = ⌊PC × (S0 - SR × M) ÷ P0⌋>, where xP is the number of seats given to each constituency via proportional representation. The resulting xS = xP + SR is the number of seats assigned to the district after summing up the assigned/reserved and proportional sections of the seat assignment.
Underhang allocation
Due to the implementation of the floor function, some seats remain unclaimed out of the total of S0, if you add up all the claimed seats. Those underhang seats are distributed using special ranking procedure. Districts are given ranks from 1 to n, based on the coefficient, Q for which it is set, that Q = x ÷ PC, with the highest Q being ranked as "1", second highest as "2" etc.
After all the districts have been ranked, the seats are assigned by adding one seat to each district, starting at the district ranked as "1" and going down, until the overhang seats run out. Each districts resulting number x is the final number, that decides how many deputies the district elects on election day.
This method ensures, that those seats are assigned to underrepresented districts, at least partially levelling the artificially created disproportionality created by the section of reserved seats.
Seat allocation
TBA
First scrutinia
TBA
Second scrutinia
TBA